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Abstract

An analytical model to describe the flutter onset of straight-through
labyrinth seals has been numerically validated using a frequency domain
linearized Navier-Stokes solver. A comprehensive set of simulations has
been conducted to assess the stability criterion of the analytical model ori-
ginally derived by Corral and Vega (2018), “Conceptual Flutter Analysis of
Labyrinth Seals Using Analytical Models - Part I: Theoretical Support,” ASME
J. Turbomach., 140 (12), pp. 121006. The accuracy of the model has been
assessed by using a simplified geometry consisting of a two-fin straight-
through labyrinth seal with identical gaps. The effective gaps and the kinetic
energy carried over are retained and their effects on stability are evaluated.
It turns out that is important to inform the model with the correct values of
both parameters to allow a proper comparison with the numerical simula-
tions. Moreover, the non-isentropic perturbations included in the formula-
tions are observed in the simulations at relatively low frequencies whose
characteristic time is of the same order as the discharge time of the seal.
This effect is responsible for the bending of the stability limit in the 0th ND
stability map obtained both in the model and the simulations. It turns out
that the analytical model can predict accurately the stability of the seal in a
wide range of pressure ratios, vibration mode-shapes, and frequencies pro-
vided that this is informed with the fluid dynamic gaps and the energy
carried over to the downstream fin from a steady RANS simulation. The
numerical calculations show for the first time that the model can be used
to predict accurately not only the trends of the work-per-cycle of the seal
but also quantitative results.

Introduction

Labyrinth seals are extensively used in aero-engines to control the
leakage between regions with different pressures to prevent the ingestion
of hot gas in the turbine disk cavities and for cooling operations (Chupp
et al., 2006). They are comprised of rotating and stationary components.
The rotating parts are usually equipped with a series of radial fins while
the stationary elements have straight or stepped geometries. The flow is
repeatedly forced to pass through small clearances generating kinetic
energy that is dissipated in the inter-fin cavity. This process increases the
resistance to flow compared to a smooth slot.
The first pioneering studies on seal flutter were conducted during the

60’ and 70’ by Alford (1964, 1971, 1975). His works discuss the cause
and prevention of fatigue failures in seals. He identified the importance
of the support side of the seal in preventing self-excited vibration.
Ehrich (1968) introduced the importance of the knife-edge clearance on
the seal stability, but his findings were restricted to the 0th nodal diam-
eter. Ehrich (1968) proposed an analytical model and identified a stabil-
ity parameter that included the effect of the clearance, the support side
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of the seal, and the geometry of the inter-fin cavity. The models described by Ehrich and Alford did not take
into account the effect of the circumferential flow. Abbot (1981) found that a seal supported on the low-pressure
side was unstable only if the mechanical frequency was lower than the acoustic frequency of the seal, and vice-
versa. According to Abbot’s criterion, the mechanical to acoustic frequency ratio and the support side of the seal
are the only two parameters that control the stability of the seal.
All the previous studies were based on experimental analysis, failure evidence, and often on bulk-flow analyt-

ical models. Nowadays, CFD analyses are commonplace both in industry and academia. Mare et al. (2010) con-
ducted a parametric investigation on a multi-finned straight-through seal to investigate the influence of the
frequency and the support location on the seal stability. They found that the aerodynamic damping depended
mainly on the cavity shape, the mode-shape, and the unsteady pressure phase distribution. Mare et al. (2010)
describe the application of a time-marching nonlinear Navier-Stokes solver to the stability analysis of an LP
turbine labyrinth seal for two different configurations. The results are compared with Abbot’s stability criterion
suggesting that complex seal configurations are not appropriate to be treated with simple stability criteria based
on the comparison of the structural and acoustic frequencies. Recently, Miura and Sakai (2019) have compared
CFD results with experimental data obtained in an in-vacuum rotating rig. The numerical results show reason-
ably good agreement with the measurements.
Recently, Corral and Vega proposed a new comprehensive model for seal flutter (Corral and Vega, 2018; Vega

and Corral, 2018). The model provides an expression for the work-per-cycle involving two new and additional
dimensionless parameters to define the stability map of the seal. All the results of the classical analytical models
(Abbot, 1981; Ehrich, 1968) are recovered and conciliated. The results were also extended to stepped-seals
Corral et al. (2020). Moreover, it has been identified that the tip labyrinth seal has an outstanding effect on the
stability of shrouded turbine rotor blades Corral et al. (2019). The numerical results are compared with the pre-
diction of the Corral and Vega (CV) model corroborating the stabilizing effect predicted analytically. Recently, a
new formulation of the baseline Corral and Vega model (2018) accounting for non-isentropic perturbations has
been proposed (Corral et al., 2021b). The model redefines the dimensionless parameters described in Corral and
Vega (2018) and outlines a more general stability map of the seal. The high sensitivity of the seal stability to dif-
ferential gapping and the role of the effective gaps and the carry-over coefficient has been addressed recently
(Corral et al., 2021a).
This work presents a numerical validation of the CV model for labyrinth seal flutter, including non-

isentropic perturbations. The paper is organized as follows. First, the analytical model and the test case are
briefly introduced. Secondly, steady-state results are presented. Finally, the results of the numerical simulations
are compared with the predictions of the analytical model. It is concluded that the numerical results present a
high degree of matching with the predictions of the high-order analytical model in a broad range of operating
conditions provided that the model is properly informed with the seal steady-state obtained from a RANS
solver.

Governing equations

The baseline CV model (Corral and Vega, 2018) solves the linearised integral form of the mass-
conservation equation of the inter-fin cavity and the differential form of the momentum equation in the
circumferential direction. The circumferential unsteady variations of the flow are retained in the model
but the mean flowfield is deemed spatially constant for a given circumferential position. The unsteady
perturbations due to the seal vibration are assumed isentropic and varying only circumferentially. The
isentropic condition is replaced by the energy equation of the inter-fin cavity in the higher-order version
of the model (Corral et al., 2021b). The flow through the seal fin is deemed quasi-stationary since the
thickness of the fin tip is much smaller than the characteristic size of the seal. Moreover, the process is
assumed to be adiabatic and the work associated with the seal rotation in the inter-fin cavity is
neglected. The seal vibration is introduced imposing that the spatio-temporal variations of the gaps, H,
and the volume of the seal have the form of travelling-waves. Finally, the linearised equations are solved
seeking solutions in the form of travelling waves as well.
The dimensionless out-of-phase component of the unsteady pressure of the cavity of the higher-order model is

p̂out�of�phase ¼ ��Ω ~eh0eff þ 1� 1
St2

� �� �.
~1þ �Ω2 1� 1

St2

� �2
" #

(1)
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where the dimensionless pressure is defined as

p̂ ¼ 1
ε

p0c
pc,s

with ε ¼ LΔθ
Hh0

(2)

and where pc,s is the mean static pressure in the inter-fin seal cavity, p0c the unsteady perturbation, and ε a small
dimensionless parameter that is a function of the seal length, L, the gap, H, the angular vibration amplitude, Δθ,
and h0, a involved function of the seal pressure ratio (see Figure 1 for a summary of the nomenclature).
Equation (1) reduces to a simple expression in the isentropic baseline model (Corral and Vega, 2018) since

�Ω ¼ ω
pc,sVc,s

_msa20

1
h0
Ω̂ ≃ Ω

h0
(3)

where the auxiliary variable Ω̂ varies smoothly between one and γ being the former the most common value in
practical cases. Under the same conditions (relative high vibration frequencies) ~1 ≃ 1 as well. The reader is
referred to Corral et al. (2021b) for further details. The mechanical to acoustic frequency ratio is defined as

St ¼ ωR
NDa0

(4)

In general, ω ¼ ω(ND) and St can be expressed as a function of either the angular frequency, ω, or the nodal
diameter, ND.
The dimensionless gap or torsion centre includes the effect of the pivot centre of the vibration mode-shape, r,

the seal clearance, H, and the geometry of the seal (see Figure 1) and is defined as

~e ¼ γrH
sL

(5)

In the isentropic formulation of the problem (Corral and Vega, 2018), because of its simplicity, the parameters
~e and h0 appear always grouped as ~eh0 which is very convenient. Nevertheless, in the higher-order formulation
the parameter ~eh0 is replaced by ~eh0eff ¼ ~eh0F (Ω) to account for non-isentropic perturbations. Moreover, the par-
ameter ~eh0eff is used to conceal other effects such as the slant of seal land (Corral et al., 2020) or the kinetic
energy carried-over to the downstream fin (Corral et al., 2021a). The expression for h0 when the kinetic energy
coefficient χ = 0 but the flow perturbations are considered isentropic is

h0 ¼ h(πs)þ J (πT =πs)
(1� χ)

πsχ þ (1� χ)
(6)

where πs ¼ P0=pc , πT ¼ Po=pe and h0 and J are complex functions of the pressure ratio that can be found in the
appendix of Corral and Vega (2018). The combined expression retaining simultaneously the kinetic energy
carried-over downstream and the non-isentropic perturbations is too complex to be written here and does not
add much to the discussion.

Figure 1. Sketch of the labyrinth seal geometry.

J. Glob. Power Propuls. Soc. | 2021 | 5: 191–201 | https://doi.org/10.33737/jgpps/141210 193

Greco and Corral | Numerical validation of an analytical seal flutter model http://www.journalssystem.com/jgpps/,141210,0,2.html

https://doi.org/10.33737/jgpps/141210
http://www.journalssystem.com/jgpps/,141210,0,2.html


The dimensionless work-per-cycle, ~W cyc, can be written as:

~W cyc ¼ Wcyc

πpc,sδ2SL=jrjHh0
¼ sign(r) p̂out�of�phase (7)

where δ ¼ rΔθ is the seal torsion displacement in the land midpoint, and S ¼ 2πRL the surface of the seal
land. The model accounts only for the work performed by the seal land since when the unsteady pressure is con-
sidered uniform within the inter-fin cavity the contribution of the fins cancels out unless the seal is slanted.
The dimensionless work-per-cycle depends on four non dimensional parameters

~W cyc ¼ ~W cyc(�Ω, St, ~eh0eff , h
0) (8)

As described in Corral et al. (2021b) the dependence of the ~W cyc on h0 is due to the new polytropic relation-
ship included in the model. Moreover, ~eh0eff introduces two limiting curves that bound the unstable region of the
seal for each frequency, the boundary curves are obtained considering a seal with very low pressure ratio and a
chocked seal. The physical interpretation of the parameters and their influence on the ~W cyc are described in
detail in Corral et al. (2021b) and Vega and Corral (2018).

Numerical setup

A simplified geometry consisting of a straight-through labyrinth seal with a single inter-fin cavity has been con-
structed to assess the accuracy of the CV model. This model only accounts for the work exerted by the seal in
the inter-fin cavity land which frequently is the dominant one. Therefore the actual shape of the adjacent cavities
is irrelevant for this purpose. It is acknowledged that the neighbouring cavities, especially in or close to the acous-
tic resonances, can exhibit a large level of unsteadiness that eventually can influence the inter-fin cavity. Especial
attention has been paid in this work to avoid such resonances to ease a clean comparison between the model and
the CFD analyses. A schematic view of the model used in this study and the geometric details of the seal are
shown respectively in Figure 1 and Table 1. Special care has been taken in sizing the upstream and downstream
cavities. Both cavities have been designed to ensure a uniform pressure at the inlet and outlet of the seal and to
avoid any eventual acoustic resonance in the frequency range of the simulations.
The CV model has been already partially assessed on the tip-shroud of an LP turbine (Corral et al., 2019)

using a well-validated frequency-domain linearized Navier-Stokes solver (Corral et al., 2003; Vega and Corral,
2016). In this work, a two-dimensional hybrid grid has been constructed in the meridional plane of the seal and
extruded in the circumferential direction to form triangular prisms and hexahedra. A grid sensitivity study has
been conducted by checking the convergence of the mass flow rate and the mean static pressure in the inter-fin
cavity. Hereafter a model with approximately 350,000 points was chosen (see Figure 2). The standard k � ω tur-
bulence model is used in this study and the mesh is fine enough to ensure yþ ≃ 1 in the whole domain. The
model used in all the simulations is a sector of 10 with 10 layers in the circumferential direction. The seal geom-
etry is considered axisymmetric, and phase-shifted boundary conditions were applied in the azimuthal interfaces
to accommodate arbitrary ND in the 10-degree sector.

Mode-shape definition

The dimensionless work-per-cycle, ~W cyc, of the seal flutter model (Corral et al., 2021b) is a function of four
independent parameters namely, �Ω, ~eh0eff , h

0
eff and St. To ease the set up of the simulations independently chan-

ging each of these four parameters, a synthetic mode-shape generator has been implemented. The seal in the
meridional plane is considered as a rigid body moving around a pivot point meanwhile in the azimuthal direction
each section is shifted to a proper angle according to the selected nodal diameter. Figure 1 describes how the

Table 1. Physical geometric parameters of the seal inter-fin cavity.

Cavity radius (R) Nominal gap (H) Length (L) Height (s)

554 mm 0.2 mm 15.8 mm 10.1 mm
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mode-shapes are defined in the meridional plane. The mode-shape displacements are applied on the seal wall
nodes of the fluid mesh, and the inner points are moved using a Laplacian smoother. The displacements are
small enough not to generate large distortions in the mesh that could jeopardize mesh quality. Moreover, this
requirement is needed to ensure that the unsteady perturbations are linear. For a given mode, only the seal
surface is moved, as shown in Figure 3a, while the rest of the solid walls are kept fixed. This method allows
easily changing the pivot point, the ND, and the frequency for conceptual studies.

Results

Steady state

The steady results obtained from the simulations are presented next. For all the simulations of this work, a non-
rotating seal is assumed to reduce the uncertainties in comparing with the model. The high-pressure and low-
pressure cavities are designed to act as plenum chambers. Both cavities are characterized by large low-Mach
re-circulation zones. (see Figure 3b (top)). The streamlines displayed in the Figure 3b (bottom) show that the
wall jet created in the first fin impinges onto the second one separating the inter-fin cavity into a thin wall-jet

Figure 2. Outline of the computational domain around the seal (a), mesh detail around the fin tip clearance region

(b), and azimuthal overview (c).

Figure 3. Velocity streamlines for the nominal pressure ratio πT ¼ 2:0 colored by the static pressure contour (a),

detail of the inter-fin cavity total pressure (b, bottom) and Mach number (b, top).
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region and a large enclosed vortex. The wall-jet mixing increases with the distance dissipating his kinetic energy.
The wall jet reaches the downstream clearance and part of its kinetic energy is recovered. The static pressure in
the inter-fin cavity is nearly constant consistently with the CV model. The model has a built-in steady-state
value however, the estimate of the static pressure within the cavity, the effective gaps, and the energy carried over
to the downstream fin are obtained averaging the steady CFD solution.
It was observed that the discharge coefficient of the baseline case changes from the first to the second fin. To

properly compare the numerical results with the model predictions we need to incorporate the effective gaps in
the formulation. The discharge coefficient is defined as the ratio between the actual mass-flow, _m, and the mass-
flow in ideal conditions, _mid . ratio Since the discharge coefficients of the first and second fin are different
(Cd ,1 = Cd ,2) this automatically implies that even if the geometric gaps are identical, the effective clearances are
not (H1,eff = H2,eff ). The discharge coefficients estimated from the CFD are Cd ,1 ¼ 0:97 for the inlet fin and
Cd ,2 ¼ 0:92 for outlet one whereas the kinetic energy carry-over coefficient is χ ¼ 0:2. The CV model includes
the effective gaps by using the effective non-dimensional seal clearance parameter, ~eeff which is a function of the
ratio between the effective clearances η ¼ H2,eff=H1,eff , which is η ¼ 0:83 in this particular case, and χ. For
straight labyrinth seals with identical geometrical clearances, the effective gap ratio is defined as:

η ¼ H2,eff

H1,eff
¼ (1þ ψ (1� χ)χ)

Cd2

Cd1

� �
(9)

where ψ ¼ ψ(J , πs, χ) is a function of the pressure ratio across each fin and of the carry-over coefficient. (see
Vega and Corral (2018); Corral et al. (2021a) for a detailed description of the model). The Reynolds number
based on the gap of the seal is Reg ¼ 32, 000 which is typical for this kind of configurations.

Work-per-cycle: 0th nodal diameter

In this section, the prediction of the analytical model is compared against the numerical results obtained with a
2D linearized Navier-Stokes solver (Corral et al., 2003) for the 0th nodal diameter. The seal motion associated
with this mode-shape does not create acoustic waves propagating in the azimuthal direction, and therefore there
are no circumferential variations of the flow. The analytical expression of the work-per-cycle for the ND 0 is
obtained from 1 for values of St ! 1. The stability map in Figure 4 compares the CFD simulations with the
analytical model predictions. The non-dimensional work-per-cycle has been normalised by j1þ ~eeffh

0j. The
unsteady simulations are obtained for a pressure ratio of π ¼ 2:0, performing a frequency sweep up to a
maximum dimensionless frequency of ~Ω ¼ 3:6 for different torsion centers. The normalized work-per-cycle has
been bounded to the range �1 , � ~W =j1þ ~eeffh

0j , 1 to magnify the unstable zone.
The stability map shown in Figure 4 might seem weird at first glance, in fact, the seal is stable only in a

narrow range of the nondimensional torsion centers (0 , ~eh0 , 0:5) contrarily to what is predicted by the clas-
sical analytical models for seal flutter (see (Ehrich, 1968)). This stability pattern is a direct consequence of the
effective gap ratio, η ¼ 0:83, due to the kinetic energy carried over to the downstream fin and the gap discharge
coefficients, χ ¼ 0:2. As described in (Corral et al., 2021a), both effects significantly change the stability of the
ND0, especially for high values of the nondimensional height of the seal, �s ¼ 17:8, the stable region on the LPS
suddenly decreases. In fact, the analytical expression of the stability criterion, which is obtained by imposing that

Figure 4. Dimensionless work-per-cycle contour plots of the 0th nodal diameter as a function of the dimensionless

frequency, ~Ω and torsion centre, ~eh0, for a two-fin straight seal operating at πT ¼ 2:0 (h0 ¼ 2). Left: CFD results.

Right: analytical high-order model (Corral et al., 2021b). Black lines mark the stability limit ( ~Wcyc ¼ 0) on the HPS.
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the ~W cyc ¼ 0:

if ~eh0,.0 then η,.
2~eh0�s � 1

2~eh0(1þ�s)þ 1
(10)

shows that for high values of the nondimensional height, �s � 1, when the torsion center is located on the LPS
and the effective gap ratio is η , 1, the seal is stable only if ~eh0 ! 0. On the other hand, if the effective gap
ratio is η ¼ 1, the seal is stable when the torsion centre is on the LPS, independently of the non-dimensional
height, �s. Figure 4 shows that the matching is good and sound overall, and the critical work-per-cycle is very well
predicted. This proofs that most of the physics of the problem is retained by the analytical model.
The higher-order model (Corral et al., 2021b) predicts that for low-frequency of vibrations (~Ω � 1) the

non-isentropic nature of the perturbations, which are isothermic, is responsible for the bending of the stability
limit that otherwise would be a vertical line, this trend is retained by the CFD simulations. As a consequence
of the normalization adopted, the maximum and minimum of the ~W cyc occur in a small interval around
~eh0 ¼ 0:5. It is important to highlight that around this value the torsion centre is physically far away from the
seal mid-point in the simulations (r ¼ þ 7L) and the seal motion no longer corresponds to a torsion mode.
This means that during the vibration, the difference between the two clearances is small and the seal is not
able to generate high unsteady pressure in the inter-fin cavity. Due to this, the physical work-per-cycle is very
small compared with that obtained when j~eh0j � 1. Moreover, one more effect that can be observed from the
simulations when jrj � 1. Figure 5 shows the out-of-phase component of the unsteady pressure for a pressure
ratio of π ¼ 2:0. It is clear that when the pivot point is far away from the inter-fin cavity (j~eh0j � 1) the
unsteady pressure in the inter-fin cavity is not uniform anymore (see Figure 5b), and its magnitude is close to
that of the downstream cavity. In this context, even a small fraction of the unsteady pressure generated in the
outer cavities could be transmitted through the clearances to the inter-fin cavity, leading to misleading results
when comparing with the model. Therefore, it is not surprising that simulations over-predict the magnitude
of the work-per-cycle of the stable zone when the seal is supported on the LPS. On the contrary, when the
pivot point is nearby the inter-fin cavity (j~eh0j � 1) the unsteady pressure generated in the inter-fin cavity
(for the same amplitude of the seal displacement) is much higher and uniform in the inter-fin cavity (see
Figure 5a).
Figure 6 shows the comparison of the CFD results with the analytical prediction for two selected torsion

centers. The simulations have been obtained for a pressure ratio of πT ¼ 2 by changing the frequency of the
seal while the torsion center was kept constant. The matching of the results for the LPS (Figure 6a) and the
HPS (Figure 6b) torsion centers is good and the trend with the frequency is very well predicted.

Work-per-cycle: Circumferential variations

The simulations of this section have been obtained by keeping the pressure ratio and the non-dimensional dis-
charge time, Ω, constant. This method is used to reduce the risk of crossing the acoustic resonances of the adja-
cent cavities of the seal. As a consequence, the circumferential variations have been accounted for on the
mechanical to acoustic frequency ratio, St, by changing the nodal diameter. In the high-order model, the critical
reduced frequency, St, is obtained by imposing in Equation (7) that ~W cyc(Stc) ¼ 0. It is readily obtained that

Figure 5. Influence of the inlet/outlet cavities: Out-of-phase component of the unsteady pressure for πT ¼ 2:0.

(a): Modes with pivot points nearby the inter-fin cavity (j~eh0j � 1). (b): Modes with pivot points far away from the

inter-fin cavity j~eh0j � 1.
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this condition yields:

St2c ¼ 1
1þ ~eh0eff(Ω, h0, η, �s)

(11)

which is a generalisation of the expression derived in Corral and Vega (2018). The nondimensional group ~eh0eff
incorporates the effect of the effective gaps, the kinetic energy carried over to the downstream fin, and the non-
isentropic perturbations.
Figure 7 shows the general stability map for a two-fin labyrinth seal operating at a pressure ratio of π ¼ 1:5

for a fixed dimensionless frequency ~Ω ¼ 3:35. The scale of the ~W cyc has been limited to the range
�0:5 , � ~W cyc , 0:5 to magnify the region about the stability limit. The seal has been designed with identical
geometrical gaps but due to the different discharge coefficients of the two fins and to the kinetic energy carried
over to the downstream fin, the outlet to inlet gap ratio is η ¼ 0:83. The parameters extracted from the steady
simulation are summarized in Table 2. As described in Corral et al. (2021a) when the gap ratio is η , 1, the
seal is unstable for high dimensionless vibration frequencies when the torsion center is on the HPS. On the con-
trary, on the LPS the seal is mostly stable except for low-frequency of vibrations when the torsion center is close
to the seal. Moreover, for high values of the nondimensional height, �s ¼ 10:7, the unstable zone on the HPS is
extended including torsion centers located far away from the seal (~eh0 � �1): Figure 7 shows that the matching
between the stability maps obtained by using the linearized Navier-Stokes analyses and the model is very good in
the whole range of torsion centers tested.
To check quantitatively the accuracy of the analytical model comparison with a selected set of CFD results is

included. Figure 8 displays the non-dimensional work-per-cycle as a function of the non-dimensional frequency
ratio, St. The simulations are obtained by keeping constant the non-dimensional discharge time, ~Ω ¼ 3:35, and
the torsion center distance. As predicted by the model, for a given torsion center the resonant condition is always

Figure 6. Nondimensional work-per-cycle for a two-fin straight seal for selected torsion centers and 0-th nodal

diameter (πT ¼ 2). Solid Lines: CV model (Corral et al., 2021a). (a) ~eh0 ¼ 0:06ðr=L ¼ 1Þ (b) ~eh0 ¼ �0:23ðr=L ¼ �4Þ
Symbols: Linearized Navier-Stokes Analyses.

Figure 7. Dimensionless work-per-cycle contour plots as a function of the reduced frequency, St, and the dimen-

sionless torsion centre, ~eh0, for a two-fin straight seal. Pressure ratio π ¼ 1:5, non-dimensional frequency ~Ω ¼ 3:35.

Left: CFD results. Right: analytical high-order model (Corral et al., 2021b).
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stable and is achieved close to St ≃ 1. That condition corresponds to the maximum of the ~W cyc (see Equation
(7)). The matching is good for all the operating conditions including the cases where the torsion center is close
to the seal (Figure 8b) and far away from the seal (Figure 8b). Both, the critical value of St and the asymptotic
trend with dimensionless frequency are well predicted.

Concluding remarks

The aeroelastic stability of labyrinth seals under different working conditions and vibration mode-shapes has
been compared with the predictions of an analytical model. It has been found that it is essential to inform the
model with the correct parameters derived from the steady-state numerical simulations, especially the effective
gaps and the amount of kinetic energy carried over to the downstream seal, which are the most critical
parameters to allow a proper comparison with the model. The non-isentropic perturbations described in the
high-order model have been observed in the CFD simulations at low vibration frequencies as expected. The
largest discrepancies between the numerical results and the model predictions have been obtained when the dis-
charge time of the seal is much smaller than the characteristic time of the vibration (Ω � 1), especially when
the seal is operating at high-pressure ratios and the support is far from the seal. However, this regime is of
modest engineering interest since in practice these frequencies are extremely low. In this context, the non-
uniformity of the unsteady pressure field in the inter-fin cavity due to the influence of the outer cavities has been
highlighted. The accuracy of the analytical model has been tested finally including the effect of the circumferen-
tial variations. The predictions of the analytical model have been compared with a large set of linear CFD simu-
lations for a seal operating at intermediate pressure ratios. The matching with the analytical model is excellent in
the whole range of the tested operating conditions. It is concluded that the model can predict not only the
trends of the work-per-cycle of the seal but also quantitative results.

Nomenclature

a0 Speed of sound in the cavity
CV Corral and Vega (2018) Model

Table 2. Steady state data derived from CFD non-linear analysis. The pressure ratio and
the nondimensional frequency are kept constant, πT ¼ 1:5 and ~Ω ¼ 3:35 respectively.

χs Cd1 Cd,2 η Re h0

0.23 0.97 0.93 0.83 21.000 3.32

Figure 8. Dimensionless work-per-cycle as a function of the frequency ratio, St. Comparison between the analytical

model and the linearized Navier-Stokes simulations of a two fin straight seal operating at constant pressure ratio

and frequency, πT ¼ 1:5 and ~Ω ¼ 3:35, for selected torsion centers. (a) ~eh0 ¼ �0:4ðr=L ¼ �4Þ (b)

~eh0 ¼ 0:05ðr=L ¼ 0:5Þ (c) ~eh0 ¼ 0:7ðr=L ¼ 7Þ.
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h0 Seal pressure function
H Fin clearance
HPS High-Pressure Side
L Seal cavity length
LPS Low-Pressure Side
_m Mass flow rate
ND Nodal diameter
pc Cavity static pressure
pe Exit static pressure
P0 Inlet total pressure
Pc0 Cavity effective total pressure
r Torsion center position
R Cavity radius
s Cavity height
St Vibration-to-acoustic frequency ratio
CC Cavity center

td ¼ pc,sVc:s

_msa20
: Discharge time

Wcyc Work per cycle
�s ¼ s=(γHh0). Nondimensional height

Re ¼ _m=(2πRμ) Reynolds number based on gap

_mid ¼ P0iAiffiffiffiffiffiffiffi
RT

p π�(γþ1)=2γ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ

γ � 1
(π(γ�1)=γ

i � 1)

r
Ideal mass flow rate

Greek symbols

γ Heat capacity ratio
π ¼ P0=pc . Cavity pressure ratio
πT ¼ P0=pe. Total pressure ratio
πc ¼ πT =π. Pressure ratios relationship
ω Vibration angular frequency (rad/s)
χ ¼ (Pc0 � pc)=(P0 � pc)=Kinetic carry-over coefficient
Ω ¼ ωtd Non-dimensional discharge time
Δθ Rotation angle
τ Non-dimensional time

Super-scriptse Non-dimensional values
’ Time perturbation

Sub-scripts

e Exit
c Cavity
cyc cycle
s Steady state
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